Вопрос: Как вы разбиваете список на куски с равномерным размером?


У меня есть список произвольной длины, и мне нужно разделить его на равные куски и работать с ним. Есть несколько очевидных способов сделать это, например, сохранить счетчик и два списка, а когда второй список заполнится, добавьте его в первый список и очистите второй список для следующего раунда данных, но это потенциально чрезвычайно дорого.

Мне было интересно, есть ли у кого-нибудь хорошее решение для списков любой длины, например. используя генераторы.

Я искал что-то полезное в itertoolsно я не нашел ничего полезного. Однако, возможно, он пропустил это.

Связанный вопрос: Каков самый «питонический» способ перебора списка в кусках?


1544


источник


Ответы:


Вот генератор, который дает куски, которые вы хотите:

def chunks(l, n):
    """Yield successive n-sized chunks from l."""
    for i in range(0, len(l), n):
        yield l[i:i + n]

import pprint
pprint.pprint(list(chunks(range(10, 75), 10)))
[[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
 [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
 [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
 [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
 [70, 71, 72, 73, 74]]

Если вы используете Python 2, вы должны использовать xrange()вместо range():

def chunks(l, n):
    """Yield successive n-sized chunks from l."""
    for i in xrange(0, len(l), n):
        yield l[i:i + n]

Также вы можете просто использовать понимание списка вместо написания функции. Python 3:

[l[i:i + n] for i in range(0, len(l), n)]

Версия Python 2:

[l[i:i + n] for i in xrange(0, len(l), n)]

2059



Если вы хотите что-то супер простое:

def chunks(l, n):
    n = max(1, n)
    return (l[i:i+n] for i in xrange(0, len(l), n))

478



Непосредственно из (старой) документации Python (рецепты для itertools):

from itertools import izip, chain, repeat

def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)

Текущая версия, предложенная Ж. Ф. Шебастианом:

#from itertools import izip_longest as zip_longest # for Python 2.x
from itertools import zip_longest # for Python 3.x
#from six.moves import zip_longest # for both (uses the six compat library)

def grouper(n, iterable, padvalue=None):
    "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
    return zip_longest(*[iter(iterable)]*n, fillvalue=padvalue)

Я думаю, что работающая машина Гвидо работает - будет работать - будет работать - снова работала.

Эти решения работают, потому что [iter(iterable)]*n(или эквивалент в более ранней версии) создает один итератор, повторный nраз в списке. izip_longestзатем эффективно выполняет циклический «каждый» итератор; потому что это тот же самый итератор, он продвигается каждым таким вызовом, в результате чего каждый такой zip-roundrobin генерирует один кортеж nПредметы.


249



Я знаю, что это своего рода старый, но я не понимаю, почему никто не упоминал numpy.array_split:

lst = range(50)
In [26]: np.array_split(lst,5)
Out[26]: 
[array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
 array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19]),
 array([20, 21, 22, 23, 24, 25, 26, 27, 28, 29]),
 array([30, 31, 32, 33, 34, 35, 36, 37, 38, 39]),
 array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49])]

93



Вот генератор, который работает с произвольными итерами:

def split_seq(iterable, size):
    it = iter(iterable)
    item = list(itertools.islice(it, size))
    while item:
        yield item
        item = list(itertools.islice(it, size))

Пример:

>>> import pprint
>>> pprint.pprint(list(split_seq(xrange(75), 10)))
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
 [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
 [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
 [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
 [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
 [70, 71, 72, 73, 74]]

75



I'm surprised nobody has thought of using iter's two-argument form:

from itertools import islice

def chunk(it, size):
    it = iter(it)
    return iter(lambda: tuple(islice(it, size)), ())

Demo:

>>> list(chunk(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13)]

This works with any iterable and produces output lazily. It returns tuples rather than iterators, but I think it has a certain elegance nonetheless. It also doesn't pad; if you want padding, a simple variation on the above will suffice:

from itertools import islice, chain, repeat

def chunk_pad(it, size, padval=None):
    it = chain(iter(it), repeat(padval))
    return iter(lambda: tuple(islice(it, size)), (padval,) * size)

Demo:

>>> list(chunk_pad(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, None)]
>>> list(chunk_pad(range(14), 3, 'a'))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 'a')]

Like the izip_longest-based solutions, the above always pads. As far as I know, there's no one- or two-line itertools recipe for a function that optionally pads. By combining the above two approaches, this one comes pretty close:

_no_padding = object()

def chunk(it, size, padval=_no_padding):
    if padval == _no_padding:
        it = iter(it)
        sentinel = ()
    else:
        it = chain(iter(it), repeat(padval))
        sentinel = (padval,) * size
    return iter(lambda: tuple(islice(it, size)), sentinel)

Demo:

>>> list(chunk(range(14), 3))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13)]
>>> list(chunk(range(14), 3, None))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, None)]
>>> list(chunk(range(14), 3, 'a'))
[(0, 1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 'a')]

I believe this is the shortest chunker proposed that offers optional padding.


62



def chunk(input, size):
    return map(None, *([iter(input)] * size))

48



Simple yet elegant

l = range(1, 1000)
print [l[x:x+10] for x in xrange(0, len(l), 10)]

or if you prefer:

chunks = lambda l, n: [l[x: x+n] for x in xrange(0, len(l), n)]
chunks(l, 10)

39



I saw the most awesome Python-ish answer in a duplicate of this question:

from itertools import zip_longest

a = range(1, 16)
i = iter(a)
r = list(zip_longest(i, i, i))
>>> print(r)
[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, 15)]

You can create n-tuple for any n. If a = range(1, 15), then the result will be:

[(1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, None)]

If the list is divided evenly, then you can replace zip_longest with zip, otherwise the triplet (13, 14, None) would be lost. Python 3 is used above. For Python 2, use izip_longest.


28



Critique of other answers here:

None of these answers are evenly sized chunks, they all leave a runt chunk at the end, so they're not completely balanced. If you were using these functions to distribute work, you've built-in the prospect of one likely finishing well before the others, so it would sit around doing nothing while the others continued working hard.

For example, the current top answer ends with:

[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74]]

I just hate that runt at the end!

Others, like list(grouper(3, xrange(7))), and chunk(xrange(7), 3) both return: [(0, 1, 2), (3, 4, 5), (6, None, None)]. The None's are just padding, and rather inelegant in my opinion. They are NOT evenly chunking the iterables.

Why can't we divide these better?

My Solution(s)

Here's a balanced solution, adapted from a function I've used in production (Note in Python 3 to replace xrange with range):

def baskets_from(items, maxbaskets=25):
    baskets = [[] for _ in xrange(maxbaskets)] # in Python 3 use range
    for i, item in enumerate(items):
        baskets[i % maxbaskets].append(item)
    return filter(None, baskets) 

And I created a generator that does the same if you put it into a list:

def iter_baskets_from(items, maxbaskets=3):
    '''generates evenly balanced baskets from indexable iterable'''
    item_count = len(items)
    baskets = min(item_count, maxbaskets)
    for x_i in xrange(baskets):
        yield [items[y_i] for y_i in xrange(x_i, item_count, baskets)]

And finally, since I see that all of the above functions return elements in a contiguous order (as they were given):

def iter_baskets_contiguous(items, maxbaskets=3, item_count=None):
    '''
    generates balanced baskets from iterable, contiguous contents
    provide item_count if providing a iterator that doesn't support len()
    '''
    item_count = item_count or len(items)
    baskets = min(item_count, maxbaskets)
    items = iter(items)
    floor = item_count // baskets 
    ceiling = floor + 1
    stepdown = item_count % baskets
    for x_i in xrange(baskets):
        length = ceiling if x_i < stepdown else floor
        yield [items.next() for _ in xrange(length)]

Output

To test them out:

print(baskets_from(xrange(6), 8))
print(list(iter_baskets_from(xrange(6), 8)))
print(list(iter_baskets_contiguous(xrange(6), 8)))
print(baskets_from(xrange(22), 8))
print(list(iter_baskets_from(xrange(22), 8)))
print(list(iter_baskets_contiguous(xrange(22), 8)))
print(baskets_from('ABCDEFG', 3))
print(list(iter_baskets_from('ABCDEFG', 3)))
print(list(iter_baskets_contiguous('ABCDEFG', 3)))
print(baskets_from(xrange(26), 5))
print(list(iter_baskets_from(xrange(26), 5)))
print(list(iter_baskets_contiguous(xrange(26), 5)))

Which prints out:

[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0], [1], [2], [3], [4], [5]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 8, 16], [1, 9, 17], [2, 10, 18], [3, 11, 19], [4, 12, 20], [5, 13, 21], [6, 14], [7, 15]]
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [12, 13, 14], [15, 16, 17], [18, 19], [20, 21]]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'D', 'G'], ['B', 'E'], ['C', 'F']]
[['A', 'B', 'C'], ['D', 'E'], ['F', 'G']]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 5, 10, 15, 20, 25], [1, 6, 11, 16, 21], [2, 7, 12, 17, 22], [3, 8, 13, 18, 23], [4, 9, 14, 19, 24]]
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]

Notice that the contiguous generator provide chunks in the same length patterns as the other two, but the items are all in order, and they are as evenly divided as one may divide a list of discrete elements.


25